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ABSTRACT: We investigate theoretically the response of
interfacial tension γ for compressible polymer blends to
thermodynamic variables. Helfand’s self-consistent field theory
is first extended to be combined with an off-lattice equation-of-
state model to describe compressibility. Typical incompatible
blends reveal that the effects of temperature and pressure (T−
P) on γ are superposed into a single curve by a dimensionless
pressure variable through the superposition in Flory−Huggins
χ and density. In the case of polymer blends with strong
compressibility difference, γ shows an anomaly upon
pressurization with no T−P superposition, even though χ still follows the superposition.

I t was found phenomenologically and theoretically that the
volume or density of polymer melts and solutions satisfies a

principle of temperature and pressure (T−P) superposition.1,2
This principle states that the effects of temperature and
pressure on the scaled volume (V/V(P0)) or density (η/η(P0))
are superposed into a universal curve, where P0 is ambient
pressure. It was shown that the superposition is attributed to
temperature insensitivity of the first pressure coefficient B1 of
bulk modulus BT (≡ ∂P/∂ ln η)T) at P0, which is the measure of
asymmetry of free energy between dilation and compression.
However, the implication and the range of applicability of this
superposition still remain to be fully explored.
The interfacial behaviors of polymer mixtures are of great

importance because a wide variety of polymer products are
made of mixtures and then involved with phase segregation and
self-assembly due to incompatibility.3 The direct manifestation
of interfacial behavior can be represented by interfacial tension
γ. In most of the experimental works, the change in γ upon
pressurization has not frequently been investigated due to the
difficulty in setting up measuring devices. Here, we theoretically
predict for the first time that typical incompatible blends reveal
a T−P superposition in γ, which originates in T−P super-
position of effective Flory−Huggins χ and density (volume).
To analyze the interfacial behaviors, a field theory for the

mixtures is often employed. In most of the polymer field
theories, it is common to assume incompressibility, where the
change in volume is ignored and the formulation of theories
becomes simplified.4 Since pressure is as equal a thermody-
namic variable as temperature, there is a definite need for
incorporation of finite compressibility in polymer field theories.
This need has been addressed by compressible random-phase
approximation (RPA) theories.5−9 However, the truncation of
free-energy series up to usually fourth-order limits RPA theories
useful for the weak segregation regime. On the other hand,

Helfand suggested a self-consistent field theory (SCFT) based
on Gaussian threads with perturbing interactions.10 This
approach has proved particularly useful for studing the
interfacial region in the weak to intermediate segregation
limit. Here, we extend Helfand’s SCFT to compressible
polymer blends by the incorporation of an off-lattice
equation-of-state model. The formalism is quite general, so
that any model can be used to make up the compressible
SCFT.
The basic methodology in the present work is a general

Edwards Hamiltonian or a Gaussian thread approach for
polymer mixtures.10,11 It is possible through the chosen
approach to design desired micro- or nanostructures and
predict physical properties and then to apply to structured bulk
materials, thin films, and organic layers. The Edwards
Hamiltonian is divided into its contribution by Gaussian chains
and perturbing intermonomer interactions to describe the local
association in given polymer mixtures.
Let us consider a binary polymer blend in the canonical

ensemble, where there are nj chains of j-species and each j-chain
consists of Nj monomers. The Edwards Hamiltonian for the
given system is given as follows
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where the first term implies the Weiner potential energy for
Gaussian chains, and W indicates the non-Gaussian potential
energy for intersegmental interactions. β has its usual definition
of 1/kT. Each j-monomer on a kth chain is placed at the
position vector rj⃗ (τk) parametrized by a contour variable τk.
The partition function Z can be formally written as
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where V is the system volume. The kinetic term represented by
the thermal de Broglie wavelength Λj is not explicitly shown. If
we define Z0 as the partition function of the Gaussian chains
without any intersegmental interaction, then the ratio Q of Z to
Z0 can be written as
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An operator, which describes the local particle density of j-
monomers on a polymer chain, is denoted as ρ̂j(r)⃗(= 1/V
∑k=1

nj ∫ 0
Nj dτkδDirac(r ⃗ − rj⃗(τk))). Alternatively, the local particle

packing density operator η ̂j(r)⃗ (= v*·ρ̂j(r)⃗) can be used instead,
where v* implies the theoretical volume of a monomer. A field
variable ρj(r)⃗ corresponding to ρ̂j(r)⃗ describes the density of j-
monomers at r ⃗ over the whole system. The η̂j(r)⃗ operator and
the associated field variable ηj(r)⃗ have a similar relationship. A
local concentration ϕj(r)⃗ is defined as ϕj(r)⃗ ≡ ηj(r)⃗/η(r)⃗, where
η(r)⃗ is the sum of ηj(r)⃗’s as η(r)⃗ = ∑ηj(r)⃗. This ϕj(r)⃗ factors
out the concentration fluctuations from η(r)⃗, which represents
the overall density fluctuations.
The particle description of the free energy given above is

now converted to the field description through the Hubbard−
Stratonovich transformation.4,12 The Edwards Hamiltonian H
and the partition function Z can be manipulated to yield
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where ωj(r)⃗ is the hypothetical (dimensionless) external
potential conjugate to ρj(r)⃗, which transfers the effect of W
on chain conformations to the partition function. Using the
definition of ρ̂j(r)⃗, the term inside the bracket in eq 4 can be
equated to
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where qj is the end-segment distribution function (chain
propagator) of the Gaussian chains along the chain contour
variable τ or a scaled contour variable s (≡ τ/Nj) spanning from
0 to 1.
Under the influence of iωj(r)⃗, qj should satisfy a modified

diffusion equation13 given below
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with the initial condition that qj (r,⃗0) = 1. In eq 6, the symbol σ
denotes the monomer diameter, and therefore v* = πσ3/6.
A conventional treatment of W is to ignore all the molecular

details in a given polymeric system, and the so-called
incompressibility constraint (η → 1) is assumed. A
phenomenological interaction parameter χ is taken into
consideration as

∫β χ ϕ ϕ⃗ = − ⃗ ̂ ⃗ ̂ ⃗W r r r r{ } d ( ) ( )j A B (7)

where ϕ̂j(r)⃗ is the particle-based concentration conjugate to
ϕj(r)⃗. The assumed incompressibility condition requires an
additional field ξ(r)⃗ as a Lagrange multiplier. However, free
space is indispensible in a continuum description of a polymeric
system given here. A finite compressibility or equation of state
(EOS) then naturally pervades the theoretical treatment.
Previously, Hong and Noolandi adopted the lattice vacancy
concept to describe compressible inhomogeneous polymeric
systems.14 Recently, Ginzburg et al. utilized the lattice vacancy
to analyze the effects of compressibility on the thermodynamic
behavior of polymer−clay nanocomposites.15 These methods
treat a solution of polymer systems and replace conceptually
the solvent molecules with lattice vacancy. The purpose of this
study is to avoid such a lattice vacancy concept by starting with
an off-lattice description of free volume. Our choice of a
compressible polymer mixture is an equation-of-state model for
perturbed hard sphere chains suggested by the present author
and Sanchez (Cho-Sanchez).2,16 The free energy Aid of the
reference system of Gaussian chains can be written as Aid =
−kT ln Z0 and stated mathematically as
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where Kj is a molecular constant that is irrelevant to
thermodynamic properties. The perturbation contribution AEV

by excluded volume (EV) to EOS is described by Chiew’s
approach17 as
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A Bethe−Peierls-type mean-field energy Anb is then added as
the contribution by nonbonded interaction as18
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where the characteristic i,j-monomer contact energy is given as
εi̅j. The u(η) gives the Bethe−Peierls mean-field description of
the attractive energy of locally packed nonbonded monomers
for its density dependence as u(η) = f p·[(g/C)

p/3ηp/3 − (g/
C)2η2], where g and C are, respectively, 1/√2 and π/6. If the
Lennard-Jones potential is taken as intermonomer potential
here, then p and f p become 12 and 4, respectively. The resultant
free energy for the CS model is given as A = Aid + AEV + Anb,
which is not only easy to use because of its analytical character
but also supports the principle of T−P superposition in
polymeric liquids. The observed superposition states that η/
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η(P0) is a universal function of ΔP/B0 ≡ (P − P0)/B0, where B0
is the bulk modulus at P0.

1,2 The necessary condition for the
superposition is the temperature insensitivity of B1 ≡ (∂BT/
∂P)P→P0, where B1 is the measure of the asymmetry of free
energy between dilation and compression. For organic
polymers and their blends, B1 upon P0 → 0 is contributed
mainly by internal pressure, in particular, the exponents of u(η)
as B1 = 2 + (p/3 + 2) + ζ, where ζ is the residual contributions
from internal and thermal pressures.2 As T goes to zero, ζ
vanishes. In the useful temperature range, ζ grows only slowly
as Δζ = ∼0.02 over 100 K. This analysis proves the insensitivity
of B1, which then gives the basis of T−P superposition in η.
We denote the non-Gaussian parts of the free energy A as Ani

= AEV + Anb, and f ni represents Ani per unit volume as f ni = Ani/
V. It is then proposed that the interaction W is given from the
local version of f ni. This action requires the replacement of ηj =
v*·ρj with η ̂j(r)⃗ = v*·ρ̂j(r)⃗, where the conceptual scheme is
given in Figure 1.

∫ ∫β β η β ρ⃗ = ⃗ ̂ ⃗ = ⃗ ̂ ⃗W r r f r r f r{ } d ( ( )) d ( ( ))j j j
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The partition function Z = Z0·Q from eq 4 is in general
evaluated by performing the Feynman path integral, which is a
demanding task. The so-called self-consistent field theory
(SCFT) deals only with the saddle point of the partition
function Z*, which in turn gives the mean-field free energy Ainh
(≈ −kT ln Z*) of the inhomogeneous blend. The resultant self-
consistent field equations are obtained by the functional
differentiation of Z with respect to ωj and ηj. The δZ/δηj(r)⃗
yields the following expression
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In this situation, there is no need for a Lagrange multiplier to
suppress compressibility. It is seen that ∂βf ni/∂ηj(r)⃗ is equal to
the nonideal part of the chemical potential per a monomer as it
should.
The δZ/δ(iωj(r)⃗) gives the connection of each constituent

density to qj as
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Solving eqs 6, 10, and 11 for all j-constituents completes the
self-consistent field theory based on the suggested Edwards
Hamiltonian for the compressible polymer mixture. It needs to
be recalled that ωj(r)⃗ at the saddle point is pure imaginary. The
present SCFT formalism is general, so that any statistical
mechanical equation of state theory, which correctly possesses
the ideal gas limit, can be incorporated to investigate systems
with finite compressibility and thus pressure-related phenom-
ena.
The interfacial tension γ is obtained as the difference

between phase-segregated free energy and that in the mixed
state per interfacial area , which can be stated mathematically
as
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where V = ∑jnjNjv*/η is used. In eq 12, μj is the chemical
potential of the j-constituent from either phase in the bulk state.
V / is rewritten as X·(Nj)

1/2·σj/√6, where X is the system
size in terms of radius of gyration (Rg,j = (Nj)

1/2σj/√6) of the j-
constituent. Prior to the prediction of superposition in γ, we
briefly test the validity of our approach by calculating γ for a
widely studied incompatible blend of polystyrene (PS) and
polybutadiene (PBD). The CS model requires three homopol-
ymer parameters: the self-interaction parameter εj̅j, σj, and Nj. A
set of homopolymer parameters for PS (A) and PBD (B) is
given as follows: σj = 4.04 Å (all); εj̅j/k = 4107.0 (PS) and
4065.9 K (PBD); Njπσj

3/6Mj = 0.41857 (PS) and 0.49395 cm3/
g (PBD). Cross interaction between different polymers is
characterized by εA̅B, which is an adjustable parameter and
determined by fitting phase behavior of a given blend system.
The ratio εA̅B/(εA̅AεB̅B)

1/2 = 0.99565 is suggested for the PS/
PBD pair to fit its binodal points.9 For the blend at ϕA = 0.5
along with chain sizes NA = 72 and NB = 80, respectively, the
calculated interfacial tension γ at 420 K and at ambient pressure
reads 0.668 mN/m along with ∂γ/∂T = −0.008 mN/m/K,
which is in reasonably good agreement with the literature
values.19 These results demonstrate the validity of our SCFT
approach.
The essence of the phase behavior of polymer blends

including their pressure responses is concentrated on effective
Flory−Huggins χ. Using the compressible random-phase
approximation (RPA) theory,20 χ was extracted from the
second-order vertex function and shown to be subdivided into
two terms as χ = χH + χS. The former χH (∼Δε/̅T·|u(η)|) is the
conventional enthalpic part. The symbol Δε ̅ (= εA̅A + εB̅B −
2εA̅B) implies the exchange energy between εi̅j’s. Unlike
incompressible situations, χH possesses density dependence
because of u(η). The remaining χS (∼Pϕ2v*/TηBT) represents
the entropic parts of χ from compressibility difference
(disparity in EOS properties) between constituents, where Pϕ
denotes the composition derivative of pressure. Symmetric
blends yield Pϕv* ∼ (εAA − εBB)·η

2du/dη. In general, a
constituent with larger εj̅j has a smaller compressibility (and
larger ηϕj→1) due to stronger cohesive energy. Therefore, Pϕ

Figure 1. Implementation of the local version of free energy. Our
system is discretized, and then for each cell centered at (xi1,yi2,zi3), a
locally equilibrated packing density ηj(xi1,yi2,zi3) is assigned. A further
discretization of the box with finer meshes leads to a continuum
description of the local density field ηj(r)⃗. A field η̂j(r)⃗ is then defined
as an operator that is conjugate to ηj(r)⃗.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz400111x | ACS Macro Lett. 2013, 2, 544−549546



vanishes for the blends with the same compressibility. It is seen
that the magnitude of χS is determined by BT. In response to

pressure, χH and χS behave in the opposite way to each other.
Upon pressurization, the increased η augments χH, whereas the

Figure 2. Phase-segregated local density profiles along with the local free volume fraction for three polymer blends at 0.1 MPa with ϕ fixed to 0.5.
The system possesses the lateral dimension of 10 Rg, and the reflecting boundary condition is applied. The compressibility difference between
constituents, signified by (εA̅A − εB̅B)/εA̅A, is chosen to be 0.002 (a), 0.087 (b), and 0.270 (c). The segregation level becomes similar with Nχ of ∼7
by setting T = 400, 400, and 520 K, respectively. The free volume fraction (FFV) screens unfavorable AB contacts in the case of (a), while FFV is in-
phase with the more compressible constituent B in cases of (b) and (c). Note that plots (a) and (b) are among barotropic blends, whereas plot (c)
represents a baroplastic blend.

Figure 3. (a) Isotherms of Nχ at temperatures plotted against pressure for the barotropic blend in Figure 2(b) (blue line, red line, green line, yellow
line, and pink line from T = 400 K with ΔT = 20 K) and for the baroplastic blend in Figure 2(c) (blue circle, red square, green diamond, yellow
hexagon, and pink triangle from T = 520 K with ΔT = 20 K). (b) The isotherms of the scaled χ/χ(P0) for the barotropic blend (solid blue line, red
line, green line, yellow line, and pink line) and for the baroplastic blend (dotted blue line, red line, green line, yellow line, and pink line) plotted
against the dimensionless pressure variable (P − P0)/B0, which, respectively, superpose into a single curve.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz400111x | ACS Macro Lett. 2013, 2, 544−549547



increased BT diminishes χS. In the case that |εA̅A − εB̅B| → 0, χS/
χ → 0 and χH becomes a dominating contribution to χ.
Therefore, pressurization leads the system to a deeper
segregation, which is the conventional behavior or barotro-
picity. In the case that |εA̅A − εB̅B|/εA̅A becomes more sizable,
χS/χ gets more substantial. The applied pressure enhances BT,
which then suppresses χS as well as χ, which is called the
anomalous χ upon pressurization or baroplasticity.21,22

Now we consider three incompatible blends. It is assumed
for convenience that polymer A adopts the molecular
parameters of PS and polymer B differs from A only by its
self-interaction as (εA̅A − εB̅B)/εA̅A = 0.002, 0.087, and 0.270.
The cross interaction εA̅B/(εA̅AεB̅B)

1/2 is, respectively, set to
0.9958, 0.9950, and 1.0080. The blends are assumed to be
symmetric with N = NA = NB, whose Nχ is to reach ∼7 at 0.1
MPa. In Figure 2, the snapshots of the phase-segregated profiles
are given for these symmetric blends at ϕA = 0.5. As |εA̅A − εB̅B|
is small in the former two cases, the blends are barotropic with
the similar binodal densities. The fractional free volume (FFV)
to screen the unfavorable contacts at the A/B interface is of
O(10−4), which was visible only when (εA̅A − εB̅B)/εA̅A ≪ 0.010
or χS/χ ≪ 0.001 as seen in plot (a). It is interesting for the
system with (εA̅A − εB̅B)/εA̅A = 0.087 or χS/χ = 0.069 in plot
(b) that FFV is in-phase with the more compressible
constituent B. Such a finite and nonvanishing |εA̅A − εB̅B| is
unavoidable, so that it is more probable for free volume to
behave as a weak selective solvent than as a neutral one. The
plot in Figure 2(c) depicts the segregation profile of a
baroplastic blend with |εA̅A − εB̅B|/εA̅A = 0.270 or χS ≫ χH as
χS/χ = 0.679. Disparity in the binodal densities and the
selectivity of free volume are clearly demonstrated.
In Figure 3(a), the isotherms of effective χ for the blends

chosen in plots 2(b) and 2(c) are calculated at selected
temperatures as a function of pressure. Those values are then
scaled as χ/χ(P0) and plotted in Figure 3(b) against the
dimensionless pressure variable ΔP/B0 over a range of
temperatures indicated. It is observed that χ’s over the given
temperature−pressure window are superposed into a single
curve, which implies that the effects of temperature and
pressure on χ are interchangeable. This superposition originates

in the T−P superposition of density: η/η(P0) = h(ΔP/B0). The
component χH (∼Δε/̅T·|u(η)|) possesses the density depend-
ence through u(η), which is fairly linear in its dependence on η
in the useful range. Therefore, χH becomes largely T−P
superposable. Even χS (∼Pϕ2v*/TηBT) is T−P superposable due
to η and BT. It can be derived from η that BT/B0 = ∂(ΔP/B0)/∂
ln(η/η(P0)) also becomes the sole function of ΔP/B0.
Therefore, the T−P superposition in χ is caused mostly by
χH in the former case, whereas the superposition is driven by χS
in the latter case.
Let us consider the interfacial tension γ of the same blends.

Our self-consistent field theory yields γ over the temperature−
pressure window as in Figure 3. Those γ values are scaled as γ/
γ(P0) and then replotted against ΔP/B0 in Figure 4. To our
surprise, γ in the case of the conventional barotropic blend
follows the T−P superposition. This prediction results from the
fact that the main contributions to γ would be η and χ. Each η
or χ satisfies the T−P superposition. As γ exhibits the
conventional pressure dependence, the T−P superposition in
χ and η works constructively to yield the superposition of γ
itself. It is notable that Helfand’s prediction23 of γ for a blend
system with |εA̅A − εB̅B| → 0 at infinite N gives γ ∼ kT·η·χ1/2,
which yields the superposition as γ/γ(P0) = (η/η(P0))·(χ/
χ(P0))

1/2. Therefore, the T−P superposition is conserved not
only in the intermediate segregation but also in the strong
segregation regime. The implication of this new finding is as
follows. The measurements on χ or γ with temperature change
at ambient pressure along with its pressure scan at only one
fixed temperature enable us to correctly estimate it at any other
temperature and pressure prior to direct measurements, once
B0, one of the bulk properties, is known. Technically, a simple
arithmetic mean of B0’s of individual constituents is enough for
B0 of the blend in the mixed state. Therefore, this finding
should prove useful in designing and controlling phase and
interfacial behaviors of many polymer blends. It is considered
that the T−P superposition in γ is not valid in the weak
segregation limit. It was shown in the vicinity of critical point24

that strong concentration fluctuations fuse the interface as γ/
kTη ∼ (χ/χC − 1)3/2 for a blend system with |εA̅A − εB̅B| → 0.

Figure 4. Isotherms of γ/γ(P0) for the barotropic blend (solid blue line, red line, green line, yellow line, and pink line as in Figure 3(a)) plotted
against the dimensionless pressure variable (P − P0)/B0, which merges into a single curve to reveal temperature−pressure superposition. In the case
of the baroplastic blend (blue circle, red square, green diamond, yellow hexagon, pink triangle, and dotted lines as in Figure 3(a)), anomaly in the
response of γ to pressure is seen with conserving no T−P superposition.
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The system should at least be far from this point to construct
T−P superposition.
Figure 4 also depicts γ in the scaled view for the baroplastic

blend. It is seen from our SCFT calculations that the strongly
baroplastic blend does not satisfy T−P superposition. γ/γ(P0)
at each temperature shows an increase with ΔP/B0 initially and
then decreases afterward. The maxima of γ/γ(P0) vary with
temperature. The pressure response of γ is anomalous because
γ does not conform with decreasing χ for the baroplastic blend.
The reason for this behavior is as follows. The main
contributions to γ are not only χ but also η. Below the
threshold pressure, the increasing η provides the impetus to
enhance the difference between free energies in the segregated
and mixed states, even though segregation tendency diminishes
with χ. The suppressed segregation soon turns γ to yield the
negative pressure coefficient (∂γ/∂P). The threshold pressure is
not fixed at different temperatures because the relative change
in η upon pressurization is more apparent at elevated
temperatures.
In summary, the effects of temperature and pressure on

interfacial tension γ for compressible polymer blends have been
studied through a self-consistent field approach. A theoretical
formalism was established to incorporate an off-lattice
equation-of-state model suggested by Cho and Sanchez in
Helfand’s self-consistent field theory. To accommodate finite
compressibility, the Lagrange multiplier for the incompressi-
bility constraint was discarded, and each constituent density
freely spanned from zero to the crystal close-packing density.
The theoretical calculation of γ for typical incompatible blends
with zero to moderate disparity in their compressibilities
revealed that the effects of temperature and pressure (T−P) on
γ are superposed into a curve, which is a function of a single
dimensionless pressure variable. The predicted superposition is
attributed to the fact that the main contributions to γ are
effective Flory−Huggins χ and density η, where those two
follow T−P superposition themselves. In the case of polymer
blends with strong compressibility difference, γ showed an
anomalous behavior upon pressurization with no T−P
superposition, even though χ still follows the T−P super-
position. The interplay between χ and η yielded maxima in γ,
when γ was plotted against pressure. These maxima varied
according to temperature.
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